Elimination Versus Substitution | Substrate | | S _N 1 | E1 | S _N 2 | E2 | |-----------|------|---|--|---|--| | Primary | _X | NEVER
primary carbocation is
too unstable | NEVER
primary carbocation is
too unstable | Highly favored with a strong nucleophile | Occurs with strong
bulky base or a strong
base plus heat | | Secondary | X | | | | | | Benzylic | Ph X | Favored with a weak nucleophile *Favored over E1 at lower temperatures | Favored with a weak base *Favored over S _N 1 with heat | Favored with a strong nucleophile | Favored with a strong base *Favored over S _N 2 with heat | | Allylic | // X | | | | | | Tertiary | x | Favored with a weak nucleophile *Favored over E1 at lower temperatures | Favored with a weak base *Favored over S _N 1 with heat | NEVER | Favored with a strong base *Heat not required | | | | Carbocations are involved. Always look for resonance or possible rearrangement. | | Inversion of
Stereochemistry | H and LG must be
antiperiplanar | $\underline{Strong\ Nucleophiles\ \&\ Weak\ Bases}\ \text{-}\ Preference\ for\ S_N2$ Strong Bases & Weak Nucleophiles - E2 Only $\mathsf{RS}^{\circleddash}$ HS[⊝] H_2S RSH NC^{\odot} Strong Nucleophiles & Strong Bases - Preference for S_N2 & E2 H_2N^{\odot} но⊖ ${\sf RO}^{\circleddash}$ $R = \bigcirc$ Weak Nucleophiles & Weak Bases - Can only do S_N1 & E1 H_2O ROH RNH_2 R₂NH ## • E1 Elimination: Zaitsev Product = Major Product ## • E2 Elimination: - o Small Base Zaitsev = Major - Bulky Base Hoffmann = Major - Strong Bases will always undergo E2 over E1. - Strong nucleophiles can do $S_N 1$ if the substrate can only undergo $S_N 1$.